skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tiano, Sophia M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Dimension-engineered synthesis of atomically thin II–VI nanoplatelets (NPLs) remains an open challenge. While CdSe NPLs have been made with confinement ranging from 2 to 11 monolayers (ML), CdTe NPLs have been significantly more challenging to synthesize and separate. Here we provide detailed mechanistic insight into the layer-by-layer growth kinetics of the CdTe NPLs. Combining ensemble and single-particle spectroscopic and microscopic tools, our work suggests that beyond 2 ML CdTe NPLs, higher ML structures initially appear as heteroconfined materials with colocalized multilayer structures. In particular, we observe strongly colocalized 3 and 4 ML emissions, accompanied by a broad trap emission. Accompanying transient absorption, single-particle optical, and atomic force microscopy analyses suggest islands of different MLs on the same NPL. To explain the nonstandard nucleation and growth of these heteroconfined structures, we simulated the growth conditions of NPLs and quantified how the monomer binding energy modifies the kinetics and permits single NPLs with multi-ML structures. Our findings suggest that the lower bond energy associated with CdTe relative to CdSe limits higher ML syntheses and explains the observed differences between CdTe and CdSe growth. 
    more » « less
    Free, publicly-accessible full text available January 28, 2026
  2. Hypervalent iron intermediates have been invoked in the catalytic cycles of many metalloproteins, and thus, it is crucial to understand how the coupling between such species and their environment can impact their chemical and physical properties in such contexts. In this work, we take advantage of the solvent kinetic isotope effect (SKIE) to gain insight into the nonradiative deactivation of electronic excited states of the aqueous ferrate(VI) ion. We observe an exceptionally large SKIE of 9.7 for the nanosecond-scale relaxation of the lowest energy triplet ligand field state to the ground state. Proton inventory studies demonstrate that a single solvent O–H bond is coupled to the ion during deactivation, likely due to the sparse vibrational structure of ferrate(VI). Such a mechanism is consistent with that reported for the deactivation of f–f excited states of aqueous trivalent lanthanides, which exhibit comparably large SKIE values. This phenomenon is ascribed entirely to dissipation of energy into a higher overtone of a solvent acceptor mode, as any impact on the apparent relaxation rate due to a change in solvent viscosity is negligible. 
    more » « less